افزایش صحت طبقهبندی سیگنالهای EEG تصور حرکتی با ترکیب منطقی طبقهبندها و با بهکارگیری الگوریتم ژنتیک و درختان تصمیم کوچک
نویسندگان
چکیده مقاله:
در این مقاله به ارائه روشی دومرحلهای برای بهبود دقت طبقهبندی سیگنال EEG میپردازیم. هدف اصلی این مقاله، بهبود طبقهبندی تصورات حرکتی نشأت گرفته از سیگنال مغز است. در این راستا یک طبقهبند ترکیبی مبتنی بر قوانین جبر بول و الگوریتم ژنتیک ارائه شده است که برای استخراج ویژگی از سیگنال EEG، از ویژگیهای حوزه زمان-فرکانس استفاده میکند که شامل شاخصهای آماری و غیرآماری بهدست آمده از تبدیل بسته موجک است. در این مقاله برای بهبود نتایج طبقهبندی، در مرحله اول یک مجموعه از درختهای تصمیم با خطاهای متفاوت ایجاد میشوند سپس با استفاده از الگوریتم ژنتیک این درختها هرس شده و ارتفاع آنها کاهش مییابد و ویژگیهای استخراجشده به طبقهبند درخت تصمیم بهعنوان طبقهبند پایه داده میشود. در مرحله دوم با استفاده از الگوریتم ژنتیک قاعده ترکیب بهینه برای ترکیب نتایج طبقهبندها بهدست میآید. قاعده ترکیب بر اساس قوانین جبر بول ارائه شده است. برای دادههای موردنیاز از نسخه دوم مجموعه دادههای BCI Competition و مجموعه داده سوم استفاده شده است. نتایج پیادهسازی روش پیشنهادی دقت 96.43% را به همراه داشته است که بهنسبت روشهای موجود در طبقهبندی سیگنال EEG، 6.43% عملکرد بهتری را داشته است.
منابع مشابه
مقایسه تأثیر وضعیت طاق باز و دمر بر وضعیت تنفسی نوزادان نارس مبتلا به سندرم دیسترس تنفسی حاد تحت درمان با پروتکل Insure
کچ ی هد پ ی ش مز ی هن ه و فد : ساسا د مردنس رد نامرد ي سفنت سرتس ي ظنت نادازون داح ي سکا لدابت م ي و نژ د ي سکا ي د هدوب نبرک تسا طسوت هک کبس اـه ي ناـمرد ي فلتخم ي هلمجزا لکتورپ INSURE ماجنا م ي دوش ا اذل . ي هعلاطم ن فدهاب اقم ي هس عضو ي ت اه ي ندب ي عضو رب رمد و زاب قاط ي سفنت ت ي هـب لاتـبم سراـن نادازون ردنس د م ي سفنت سرتس ي لکتورپ اب نامرد تحت داح INSURE ماجنا درگ ...
متن کاملبکارگیری تکنیکهای خوشهبندی و الگوریتم ژنتیک در بهینهسازی درختان تصمیم گیری برای اعتبارسنجی مشتریان بانک ها
درختان تصمیم گیری به عنوان یکی از تکنیک های داده کاوی کاربرد زیادی در اعتبارسنجی مشتریان بانک و شناسایی آن ها برای اعطای تسهیلات اعتباری دارد. مسئله اصلی در پیچیدگی درختان تصمیم گیری، اندازه بیش از حد، عدم انعطاف پذیری و دقت کم در طبقه بندی است. هدف از این مقاله ارائه مدل ترکیبی در بهینه سازی درختان تصمیم گیری توسط تکنیک الگوریتم ژنتیک به منظور حل مسائل ذکر شده در فوق برای اعتبارسنجی مشتریان با...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملاثر بربرین در تنظیم آستروسیتهای Gfap+ ناحیه هیپوکمپ موشهای صحرایی دیابتی شده با استرپتوزوتوسین
Background: Diabetes mellitus increases the risk of central nervous system (CNS) disorders such as stroke, seizures, dementia, and cognitive impairment. Berberine, a natural isoquinolne alkaloid, is reported to exhibit beneficial effect in various neurodegenerative and neuropsychiatric disorders. Moreover astrocytes are proving critical for normal CNS function, and alterations in their activity...
متن کاملپیشبینی روند حرکتی قیمت سهام با استفاده از XCS مبتنی بر الگوریتم ژنتیک و یادگیری تقویتی
پیشرفتها در حوزۀ هوش مصنوعی و یادگیری ماشین بهخصوص درزمینۀ محاسبات تکاملی نهتنها ما را قادر به تجزیهوتحلیل مؤثرتر دادهها نموده است، بلکه این امکان را فراهم ساخته که از آنها برای فهم هرگونه الگوی زیربنایی بازارهای مالی استفاده گردد. اقتصاددانان، آماردانان و مدرسان امور مالی همواره علاقهمند به توسعه و آزمایش مدلهای رفتاری قیمت سهام بودهاند. XCS سامانهای مرکب از الگوریتم ژنتیک و یادگیری ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 47 شماره 3
صفحات 931- 938
تاریخ انتشار 2017-11-22
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023